

KALAM SAT

Комитет за развој свемирског програма Република Србија 21000 Нови Сад M Б: 28104294 2comnet.info/komsat/sr/

Committee for Space Programme Development Republic of Serbia 21000 Novi Sad IDN: 28104294 2comnet.info/komsat/en/

ANURAG

TEAM MEMBERS 1) S SAI SHIVA RAMA KRISHNA-EPS 2)G MADHU-OBC & COMMUNICATION 3)B MANJULA NAIK-PAYLOAD 4)V VISHAL-STRUCTURAL AND DESCENT CONTROL **5)P NAVEEN KUMAR- GUI**

SYSTEM OVERVIEW

MISSION SUMMARY

The WCRCWF2021/22 is designed to simulate all aspects of a real Satellite/Space mission, including design, development, testing, launch, operations, and data analysis, by means of teamwork.

The Rocket launch The Rockets for the launch campaign will be provided by the organizer. The Rocket would deploy its parachute at apogee, together with the CanSat. Just after the apogee (0-2 seconds later), the CanSat would separate from the Rocket and make separate parachute descent.
 Primary and secondary CanSat missions

Primary mission: The team must build a CanSat and program it to accomplish the following compulsory primary mission: To measure AIR POLUTION after release and during descent and transmit these data as telemetry to the Ground Station at least once every 2 seconds. During the post-flight analysis, it must be possible for the team to analyze the data obtained and display it in graphs.
 Secondary mission: Each team through its Ground Station must be able to send a telecommand (uplink) to CanSat, during the descent, which must be possible to register visually by the Jury (e.g. deploy of some parts, fake solar panels, antenna, door, National flag etc. Literally anything that can be seen from the ground).

STRUCTURE

SPECIFICATIONS

WEIGHT : 42 GRAMS DIMENSIONS : HEIGHT : 115 MM DIAMETER : 66MM MATERIAL USED : PLA

DESCENT CONTROL SYSTEM

We used three parachute system as a descent control system

PAYLOAD

PAYLOAD : AIR POLLUTION MEASURMENT

S.NO	SENSOR USED	POLLUTANT MEASRMENT	
1	MICS 6814	NITROGEN DIOXIDE NO2 AMMONIA GAS NH3 CARBON MONOOXIDE CO	C0 NH3 NO2 GND H50
2	MQ 131	OZONE GAS <mark>O3</mark>	
3	DHT11	TEMPURATURE HUMIDITY	

ON BOARD COMPUTER

ARDUINO NANO

PROCESSOR-ATMEGA328P PROM-32KB RAM-2KB EEPROM-1KB

COMMUNICATION

KEYPOINTS

RF TRANSMITTER USED: XBEE PRO S2C
 COMMUNICATION INTERFACE –UART
 REFERENCE DISTAN CE-1000 METER
 DATA RATE – 100BPS TO 1MBPS
 FREQUENCY RANGE-2.4GHZ

GROUND STATION

GROUND STATION

GRAPHICAL USER INTERFACE

GUI creating Process

INTERFACE DESIGN

Settings Import Export Help

Sample Rate (Hz) 10000 CSV V UART: COM3 V 9600 V Disconnect

Data saving through .CSV file

×	Autos	ave Off 📙	Off RASAA ~					ج	O Search (Alt+Q)							
F	ile H	ome Insert Pag	ge Layout 🛛 F	ormulas	Data Re	eview Vie	ew Add-i	ns Help	Data S	Streamer	Power Piv	ot				
H	174	\sim : $\times \checkmark f_x$	214													
	А	В	С	D	E	F	G	Н	I.	J	К	L	М	N	0	Р
1	Sample I	UNIX Timestamp (1	FEMPERATUF			NITROGEN	DZONE (PF A	MMONIA (PPM)							
2	0	1.66411E+12	22	46	0.49	1	15	174								
3	1	1.66411E+12	22	47	0.47	1	15	171								
4	2	1.66411E+12	22	47	0.47	1	15	172								
5	3	1.66411E+12	22	47	0.46	1	15	172								
6	4	1.66411E+12	22	47	0.47	1	15	172								
7	5	1.66411E+12	22	47	0.47	1	15	171								
8	6	1.66411E+12	22	47	0.47	1	15	171								
9	7	1.66411E+12	22	47	0.41	1	15	172								
10	8	1.66411E+12	22	47	0.46	1	15	173								
11	9	1.66411E+12	22	47	0.48	1	15	172								
12	10	1.66411E+12	22	47	0.47	1	15	173								
13	11	1.66411E+12	22	47	0.46	1	15	174								
14	12	1.66411E+12	22	47	0.47	1	15	173								
15	13	1.66411E+12	22	47	0.47	1	15	173								
16	14	1.66411E+12	22	47	0.46	1	15	174								
17	15	1.66411E+12	22	47	0.47	1	15	175								
18	16	1.66411E+12	22	47	0.46	1	15	177								
19	17	1.66411E+12	12	47	0.47	1	15	178								
20	18	1.66411E+12	12	47	0.47	1	15	180								
21	19	1.66411E+12	12	47	0.47	1	15	181								
22	20	1.66411E+12	12	47	0.47	1	15	181								
23	21	1.66411E+12	12	47	0.48	1	15	186								
24	22	1.66411E+12	12	47	0.46	1	17	186								
25	23	1.66411E+12	12	46	0.48	1	17	187								
26	24	1.66411E+12	12	46	0.48	1	17	188								
27	25	1.66411E+12	12	46	0.47	1	17	189								
28	26	1.66411E+12	12	46	0.48	1	17	189								
29	27	1.66411E+12	12	46	0.48	1.4	17	190								
30	28	1.66411E+12	12	46	0.47	1.4	17	191								
31	29	1.66411E+12	12	46	0.47	1.4	17	191								
-	Þ	ASAA (+)												: .	_	

POSITION RETRIEVEL

 WHAT IS RSSI ?
 RSSI stands for Received Signal Strength Indicator, and measures how well a Reciever device can hear (receive) a signal.

SIGNAL STRENGTH

WHAT IS RSSI TRACKING?

rssisignal =pulseIn(rpin,LOW,20A0); if((rssisignal<=20) && (rssisignal!=0)){ digitalWrite(BUZZER,HIGH); delay(50); digitalWrite(BUZZER,LOW); digitalWrite(BUZZER,HIGH); delay(50); digitalWrite(BUZZER,LOW);

if((rssisignal<=50) && (rssisignal>=20)){
 digitalWrite(BUZZER,HIGH);
 delay(100);
 digitalWrite(BUZZER,LOW);
 digitalWrite(BUZZER,HIGH);
 delay(100);
 digitalWrite(BUZZER,LOW);

if((rssisignal<=150) && (rssisignal>=50)){
 digitalWrite(BUZZER,HIGH);
 delay(200);
 digitalWrite(BUZZER,LOW);
 digitalWrite(BUZZER,HIGH);
 delay(200);
 digitalWrite(BUZZER,LOW);

ELECTRICAL POWER SYSTEM

KEY POINTS OF EPS :
1. ALL SUBSYSTEMS WORKS UNDER 5V
2. EPS MODULE SHOULD GIVE CONTINOUSE SUPPLY OF 5V
3. POWER SAVING METHODS ARE IMPLEMENTED TO SAVE BATTERY POWER

POWER SAVING METHODS IMPLEMENTED

We used single channel relay module to control the outflow of power from battery to subsystems

SN0	TECHNICAL REQUIREMENTS	OUTCOME
1	All the components of the CanSat must fit inside a standard soft drinks can (115 mm height and 66 mm diameter),	HEIGHT-115MM DIAMETER-66MM
2	The antennas, transducers and other elements of the CanSat cannot extend beyond the cans diameter until it has left the launch vehicle.	NO ANTENNA LEFT OUT BEFORE LAUNCH
3	The mass of the CanSat must be between a minimum of 100 grams and a maximum of 150 grams.	MASS-147 GRAMS
4	Explosives, detonators, pyrotechnics, and inflammable or dangerous materials are strictly forbidden.	NO EXPLOSIVES ARE USED
5	The CanSat must have a recovery system (a 3 parachutes attached to the CanSat), capable of being reused after launch.	3 PARACHUTE SYSTEM IS USED
6	Inclusion of a positioning system for retrieval (beeper, radio beacon, GPS, etc.) is recommended.	RSSI TRACKER IS USED FOR RETRIEVAL
7	The CanSat must be powered by a battery	BATTERY IS USED FOR POWER
8	The opening of the CanSat parachutes will be scoring. The strength of the parachute must be tested to ensure that the system will operate nominally.	PARACHUTE IS OPENED SUCCESFULLY

PRIMARY MISSION:MESAURMENT OF AIR POLLUTION OUTCOME:

В	С	D	E	F	G	н	
X Timestamp (TEMPERATUR	HUMIDITY	CORBON N	NITROGEN	OZONE (PF	AMMONIA	(PPI
1.66411E+12	22	46	0.49	1	15	174	
1.66411E+12	22	47	0.47	1	15	171	
1.66411E+12	22	47	0.47	1	15	172	
1.66411E+12	22	47	0.46	1	15	172	
1.66411E+12	22	47	0.47	1	15	172	
1.66411E+12	22	47	0.47	1	15	171	
1.66411E+12	22	47	0.47	1	15	171	
1.66411E+12	22	47	0.41	1	15	172	
1.66411E+12	22	47	0.46	1	15	173	
1.66411E+12	22	47	0.48	1	15	172	
1.66411E+12	22	47	0.47	1	15	173	
1.66411E+12	22	47	0.46	1	15	174	
1.66411E+12	22	47	0.47	1	15	173	

SECONDARY MISSION: SENDING A TELECOMMAND

THANKS!